Inhibitor treatment of peripheral mononuclear cells from Parkinson’s disease patients further validates LRRK2 dephosphorylation as a pharmacodynamic biomarker
نویسندگان
چکیده
Activating mutations in leucine-rich repeat kinase 2 (LRRK2) are strongly associated with increased risk of Parkinson's disease (PD). Thus, LRRK2 kinase inhibitors are in development as potential Parkinson's disease therapeutics. A reduction in the constitutive levels of phosphorylation on leucine-rich repeat kinase 2 (LRRK2) is currently used to measure target engagement of LRRK2 kinase inhibitors in cell and animal models. We aimed to determine if reduced phosphorylation of LRRK2 following inhibitor treatment is also a valid measure of target engagement in peripheral mononuclear cells from Parkinson's disease patients. Peripheral mononuclear cells from idiopathic Parkinson's disease patients and controls were treated ex vivo with two structurally distinct inhibitors of LRRK2, at four different doses, and immunoblotting was used to assess the reduction in LRRK2 phosphorylation at Ser910, Ser935, Ser955 and Ser973. Both inhibitors showed no acute toxicity in primary cells and both inhibitors reduced the constitutive phosphorylation of LRRK2 at all measured residues equally in both control and Parkinson's disease groups. Measuring the reduction in LRRK2 phosphorylation resulting from LRRK2 kinase inhibition, is thus a valid measure of acute peripheral target engagement in Parkinson's disease patients. This is important if LRRK2 kinase inhibitors are to be used in a clinical setting.
منابع مشابه
Interrogating Parkinson's disease LRRK2 kinase pathway activity by assessing Rab10 phosphorylation in human neutrophils
There is compelling evidence for the role of the leucine-rich repeat kinase 2 (LRRK2) and in particular its kinase function in Parkinson's disease. Orally bioavailable, brain penetrant and potent LRRK2 kinase inhibitors are in the later stages of clinical development. Here, we describe a facile and robust assay to quantify LRRK2 kinase pathway activity by measuring LRRK2-mediated phosphorylatio...
متن کاملLRRK2 dephosphorylation increases its ubiquitination
Activating mutations in the leucine rich repeat protein kinase 2 (LRRK2) gene are the most common cause of inherited Parkinson's disease (PD). LRRK2 is phosphorylated on a cluster of phosphosites including Ser(910), Ser(935), Ser(955) and Ser(973), which are dephosphorylated in several PD-related LRRK2 mutants (N1437H, R1441C/G, Y1699C and I2020T) linking the regulation of these sites to PD. Th...
متن کاملRegulation of LRRK2 Expression Points to a Functional Role in Human Monocyte Maturation
Genetic variants of Leucine-Rich Repeat Kinase 2 (LRRK2) are associated with a significantly enhanced risk for Parkinson disease, the second most common human neurodegenerative disorder. Despite major efforts, our understanding of LRRK2 biological function and regulation remains rudimentary. In the present study we analyze LRRK2 mRNA and protein expression in sub-populations of human peripheral...
متن کاملEvaluation of in vitro Effect of Pyocyanine Pigment on Interleukin-2 Secretion from Peripheral Blood Mononuclear Cells in Cancer Patients
Background and Objective: The pyocyanine pigment in Pseudomonas aeruginosa stimulates blood cells to secrete IL-2. IL-2 cytokine is an activator of cytotoxic T cells and natural killer cells. These cells destroy the target cells of patients with cancer. This study aimed to evaluate the effects of pyocyanine on the IL-2 secretion from peripheral blood mononuclear cells (PBMCs) in patients with b...
متن کاملCharacterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2
Mutations in leucine-rich repeat kinase 2 (LRRK2) are strongly associated with late-onset autosomal dominant Parkinson's disease. We employed a new, parallel, compound-centric approach to identify a potent and selective LRRK2 inhibitor, LRRK2-IN-1, and demonstrated that inhibition of LRRK2 induces dephosphorylation of Ser910 and Ser935 and accumulation of LRRK2 within aggregate structures. LRRK...
متن کامل